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Abstract
Studies on volunteered geographic information (VGI) have focused on

examining its validity to reveal geographic phenomena in relatively

recent periods. Empirical evaluation of the validity of VGI to reveal

geographic phenomena in historical periods (e.g., decades ago) is lack-

ing, although such evaluation is desirable for assessing the possibility

of broadening the temporal scope of VGI applications. This article

presents an evaluation of the validity of VGI to reveal historical geo-

graphic phenomena through a citizen data-based habitat suitability

mapping case study. Citizen data (i.e., sightings) of the black-and-

white snub-nosed monkey (Rhinopithecus bieti) were elicited from

local residents through three-dimensional (3D) geovisualization inter-

views in Yunnan, China. The validity of the elicited sightings to reveal

the historical R. bieti distribution was evaluated through habitat suit-

ability mapping using the citizen data in historical periods. The results

of controlled experiments demonstrated that suitability maps pre-

dicted using the historical citizen data had a consistent spatial pattern

(correlation above 0.60) that reflects the R. bieti distribution (Boyce

index around 0.90) in areas free of significant environmental change

across historical periods. This in turn suggests that citizen data have

validity for mapping historical geographic phenomena. It provides sup-

porting empirical evidence for potentially broadening the temporal

scope of VGI applications.
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1 | INTRODUCTION

Volunteered geographic information (VGI), referring to geographic information created by volunteer citizens, is an

emerging phenomenon that has tremendous influence on GIScience (Goodchild, 2007). VGI has flourished with the

rapid advancement of various enabling technologies in recent years (Web 2.0, virtual globe, location-based services,

social media, etc.) (Brovelli, Minghini, & Zamboni, 2015; See et al., 2016). It serves as the backbone of many applica-

tions by providing data to reveal geographic phenomena in relatively recent periods (Fonte, Bastin, See, Foody, &

Lupia, 2015; Gao et al., 2017; Goodchild & Glennon, 2010; Haklay & Weber, 2008; Rossiter, Liu, Carlisle, & Zhu, 2015;

Sullivan et al., 2009; Zook, Graham, Shelton, & Gorman, 2010).

VGI also has the potential to provide data to reveal geographic phenomena in historical periods (historical VGI).

Citizens as sensors (Goodchild, 2007) have long been observing the world and accumulating information, even before

advanced technologies emerged. For example, local residents in remote rural areas whose livelihoods are closely linked

to ecosystem services are valuable information sources for obtaining wildlife habitat use data (i.e., presences). Subsist-

ence farmers, shepherds, hunters, and forest rangers have spent a great deal of time in the field and have encountered

wildlife in its natural habitats. They have accumulated rich local ecological knowledge about the wildlife presences in

their local areas (Anad�on, Gim�enez, Ballestar, & P�erez, 2009; Huntington, 2000; Mackinson, 2001; Mackinson &

Nottestad, 1998).

As a result, “citizen data,” as a form of VGI that is either actively contributed by or passively elicited from volunteer

citizens (Zhu et al., 2015), can be obtained to reveal geographic phenomena in the past. Zhu et al. (2015) proposed a

citizen data-based approach for mapping natural geographic phenomena. Citizen data are elicited by interviewing citi-

zen volunteers with the aid of three-dimensional (3D) geovisualization tools and are then used to build predictive mod-

els for mapping geographic phenomena (e.g., habitat suitability). Citizen data could have many practical applications.

For example, it offers a cost-effective source for obtaining wildlife data to sustain conservation practices that have lim-

ited budget support (Anad�on et al., 2009; Anad�on, Gim�enez, & Ballestar, 2010; Danielsen et al., 2003). It is particularly

desirable for conservation programs in poor and remote areas, where most biodiversity hotspots occur (Myers,

Mittermeier, Mittermeier, da Fonseca, & Kent, 2000).

Using historical citizen data to understand geographic phenomena in the past is crucial for many applications. For

example, species historical distributions are useful for understanding species niche conservatism and evolution

(Sober�on & Nakamura, 2009; Wiens & Donoghue, 2004), forming and assessing ecological hypotheses (Carnaval &

Moritz, 2008; Peterson & Anamza, 2015; Werneck, Costa, Colli, Prado, & Sites, 2011), improving species delimitation

(Pelletier, Crisafulli, Wagner, Zellmer, & Carstens, 2015), assessing climatic or anthropogenic effects on species persist-

ence (Hanberry, He, Palik, & He, 2012; Nogu�es-Bravo, 2009), and informing species reintroduction conservation

(Franklin & Miller, 2009; Graham, Ferrier, Huettman, Moritz, & Peterson, 2004).

However, special attention should be paid to the validity of citizen data when they are used to reveal geographic

phenomena in historical periods. VGI quality is the most pressing concern for VGI applications, and methods have

been developed to assess or assure VGI quality (Goodchild & Li, 2012; Senaratne, Mobasheri, Ali, Capineri, & Haklay,

2017). VGI quality is often assessed by comparing VGI against authoritative reference data sets from the perspectives

of the fundamental dimensions of spatial data quality (positional, attribute, temporal, and semantic accuracy, logical

consistency, completeness, lineage, etc.) (Antoniou & Skopeliti, 2015; Jackson et al., 2013; Senaratne et al., 2017). VGI

quality assurance methods are mostly for VGI generated on digital platforms involving a large network of contributors,

where observations from different contributors can be used to validate each other or converge to the “truth” (Ali &

Schmid, 2014; Foody et al., 2013; Goodchild & Li, 2012). However, historical citizen data in some cases is the only

source of information about many types of historical geographic phenomena, and there are simply no reference data

sets available for comparing with VGI. Moreover, evaluation of VGI quality focuses on the raw data with little consider-

ation of the validity of using VGI for spatial analysis and modeling (e.g., modeling species distribution). Besides, histori-

cal VGI contributors (e.g., residents in remote regions) often do not have access to networked digital platforms due to

their lack of technical skills and limited accessibility to information infrastructures. Finally, VGI quality assessment and
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assurance focuses on VGI reflecting geographic phenomena in relatively recent periods after the enabling technologies

(location-based services, social media, etc.) emerged. Treatment of VGI regarding geographic phenomena in historical

periods is lacking.

Unlike VGI generated in the digital era, the validity of historical citizen data depends largely upon the accuracy of

the recalled memories of volunteer citizens (i.e., no records were kept at the time of observation). Memories could

become vague as time passes. Thus, the validity of historical citizen data might decay when being used to reveal geo-

graphic phenomena in earlier periods. For example, one should be cautious when using wildlife sightings elicited from

volunteer citizens for modeling species historical distributions, because the quality of species occurrence data has a

profound impact on the performance of species distribution models (Moudr�y & �Símov�a, 2012; Osborne & Leit~ao,

2009). Are citizen data regarding geographic events or phenomena which happened decades ago still valid and useful

to reveal the events or phenomena? If not, how far back in time can historical citizen data be considered trustworthy?

These are legitimate questions regarding VGI usability (Antoniou & Skopeliti, 2015; Fonte et al., 2015) that one should

ask before using historical citizen data in applications.

There are few studies involving historical citizen data collection and analysis. While collected citizen data might

cover a long span back in time, studies have focused on examining the validity of citizen data to reveal geographic phe-

nomena in relatively recent periods. For instance, Anad�on et al. (2009) collected species distribution and abundance

data from local shepherds. Data in a 10-year period prior to data collection were used for abundance modeling

(Anad�on et al., 2010). Zhu et al. (2015) collected wildlife sightings by interviewing local residents using a 3D geovisuali-

zation tool. Elicited wildlife sightings in a 5-year period prior to data collection were used for habitat suitability

mapping.

There is a lack of evaluation of the validity of citizen data to reveal geographic phenomena in historical periods

(e.g., decades ago). Evaluation of the validity of historical citizen data is desirable for assessing the possibility of broad-

ening the temporal scope of VGI applications (e.g., using VGI to study species historical distributions).

This article presents an evaluation of the validity of historical VGI by evaluating citizen data for mapping geo-

graphic phenomena in historical periods. Citizen data on sightings of the black-and-white snub-nosed monkey

(Rhinopithecus bieti) were elicited from local residents through geovisualization interviews (Zhu et al., 2015) at the

Mt. Lasha area in Yunnan, China. This is the first time the geovisualization interview approach has been implemented

to collect historical citizen data. The decades-long temporal coverage of the elicited citizen data was divided into three

shorter historical periods. The validity of citizen data to reveal the R. bieti distribution in each historical period was

then evaluated through habitat suitability mapping using citizen data in that period. This article is organized as follows.

Section 2 presents data collection (citizen data elicitation and validation data collection) and experiment design (histori-

cal periods division, suitability mapping method, evaluation and assessment). Additional supporting materials are pro-

vided in the Supporting Information. Section 3 presents the evaluation results. Sections 4 and 5 present the discussion

and conclusions, respectively.

2 | MATERIALS AND METHODS

2.1 | Study area

The study area is the Mt. Lasha area in Yunling nature reserve, northwest Yunnan Province, China (Figure 1). R. bieti is

a significant species in this area. It is classified as “Endangered” on the International Union for Conservation of Nature

(IUCN) Red List of Threatened Species (IUCN, 2016). The geographic distribution of R. bieti is limited to the area

between the upper Mekong and Yangtze Rivers, mostly in northwest Yunnan and southeast Tibet (Long, Kirkpatrick,

Zhong, & Xiao, 1994; Xiao, Ding, Cui, Zhou, & Zhao, 2003). The Mt. Lasha area is within the southern portion of the

geographic range of R. bieti. It is a habitat for an isolated group of R. bieti composed of about 100 individuals (Huang,

2009; Huang, Cui, Scott, Wang, & Xiao, 2012). The Mt. Lasha area has been part of a protected area since the estab-

lishment of the Yunling Nature Reserve in 2006.
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2.2 | Data collection

2.2.1 | Citizen data

R. bieti presence data were collected through geovisualization interviews with local residents who had intensive field

experience in the local area. The interviews were conducted using 3dMapper (Burt & Zhu, 2004), a geovisualization

GIS (geographic information system) software package that is capable of integrating a DEM (digital elevation model)

with high-resolution satellite imagery to produce an intuitive 3D view of the study area. 3dMapper (http://solim.geog-

raphy.wisc.edu) provides an intuitive and user-friendly interface through which the user can pan, zoom in or out, and

rotate in the 3D scene (Figure 2). The user can report data by directly drawing points, lines, or polygons over the 3D

scene and then fill in auxiliary information in the associated attribute tables.

The interviews were conducted by one biologist and one field assistant, who were very familiar with the study

area (i.e., a local forest ranger). The interviewees were familiarized with the 3D visualization of the study area in

3dMapper by exploring the tool under the guidance of the interviewers. For most interviewees, it took about 20–30

min to learn how to accurately locate places named by the field assistant in the 3D scene. The interviewees were then

FIGURE 2 Geovisualization interview sessions with the local residents using 3dMapper: (a) the local residents locating
monkey sightings and activity routes; and (b) a 3D scene of a small portion of the study area onwhich the local residents
outlinedmonkey sightings and routes

FIGURE 1 Location of the study area: (a)Mt. Lasha in Yunling ProvinceNature Reserve, Lanping county, Yunnan, China;
(b) a 3D perspective image of theMt. Lasha area; and (c) a family of R. bieti in their natural habitat. Photoby Z. F. Xiang
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asked to recall the areas where they had sighted the monkeys, along with the routes they took in the field. Information

on where and when they sighted the monkeys was recorded as polygons and attribute tables tied to the polygons.

Information on the activity routes, including the location and the timing and frequency of use of the routes, was

recorded as polylines and attribute tables tied to the polylines. The spatial locations of sightings and routes were

directly located and drawn on the 3D scene. Some interviewees, for example the elders, had difficulties using 3dMap-

per to directly locate monkey sightings and/or activity routes due to vision or map-reading problems. Instead, they pro-

vided sightings and routes through place names and/or descriptions of micro-terrain features. Sightings and routes

were then located and drawn in 3dMapper by the field assistant based on their descriptions. The temporal information

recalled by the interviewees (year, month) was refined by cross-checking the year against the timing of major events

(e.g., national policy implementation, marriage, child born, etc.) and the month against seasonal activity patterns in the

area (e.g., farming).

Geovisualization interview sessions with the local residents in the Mt. Lasha area were conducted in July and

August 2010 (Figure 2). In total, 68 local residents from all five nearby villages who had extensive experience in the

field were interviewed. Field activities regularly conducted by the interviewees included hunting, pasturing, medicinal

herbs collection, logging, and farming in the area. Interviewees who went for hunting and pasturing usually spent more

than six months per year in the field. Interviewees who went for the other activities often spent three or four months

per year in the field. The age composition of the interviewees is shown in Table 1. The R. bieti sightings and activity

routes collected through the interviews cover a temporal span from the 1950s through to 2010. Limited by the avail-

ability of environmental data needed for experiments (Section 2.3.1; Supporting Information S1), only R. bieti sightings

in three historical periods (i.e., 1973–1981, 1987–2005, and 2006–2010) were examined in this study (Figure 3). The

spatial extent of the study area (Figure 3) was determined by considering the spatial coverage of the elicited citizen

data (i.e., sightings and routes) and the historical home range of the Mt. Lasha R. bieti group.

TABLE 1 Age composition of the interviewees in years

Age group 19–30 31–40 41–50 51–60 61–70 71–78

Frequency 7 12 16 18 10 5

FIGURE 3 Sightings of R. bieti elicited from the local residents and activity routes traveled by the local residents in the
three historical periods (Section 2.3.1): (a) 26 sightings and 16 routes in 1973–1981 elicited from20 interviewees aged
between 41 and 76; (b) 30 sightings and 20 routes in 1987–2005 elicited from18 interviewees aged between 29 and 78;
and (c) 59 sightings and 45 routes in 2006–2010 elicited from32 interviewees aged between 19 and 64
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2.2.2 | Validation data

The presence locations of R. bieti were recorded during a field-tracking campaign of the R. bieti group in the Mt. Lasha

area. These field-tracked R. bieti presence locations were used as independent validation data to assess the validity of

presence data elicited from the local residents (Section 2.3).

One biologist and two field assistants first spent nearly a year in the field to habituate the monkeys and to familiarize

themselves with the surrounding terrain. Field tracking and direct observation of the monkeys were then conducted in

2008 and 2009, with the primary purpose of collecting detailed observational data for behavioral studies (Huang, 2009;

Huang, Cui, Scott, Wang, & Xiao, 2012; Huang et al., 2017). The field tracking covered a five-month period in 2008

(May, Jun, Jul, Aug, Oct) and nine months in 2009 (Jan, Feb, Mar, Apr, Jun, Jul, Aug, Sep, Dec). During the field-tracking

periods, the locations of the monkeys were recorded every 30 min in the daytime. These field-tracked presence locations

consisted of the most detailed data available that reflected the distribution of R. bieti in the study area (Figure 4).

2.3 | Evaluation of historical citizen data

2.3.1 | Experiment design

The validity of the R. bieti presence data elicited from local residents to reveal the historical R. bieti distribution was

evaluated by examining the quality of habitat suitability mapping using these presence data. Habitat suitability is

mapped by coupling the environmental data layers on factors impacting wildlife habitat use and the relationships

between habitat suitability and these factors (environmental factors hereafter) (Guisan & Zimmerman, 2000; Hirzel &

Lay, 2008). The suitability–environment relationships are first derived from the environmental data values at wildlife

presence locations and then applied to the entire environmental data layers to predict a habitat suitability map (Elith

FIGURE 4 Field-tracked R. bieti presence locations recorded during field work conducted in 2008 and 2009
(2,707 presence locations)
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et al., 2006; Pearce & Boyce, 2006). The quality of the so-predicted suitability map thus depends on the validity of the

wildlife presence data. It is thus fair to say that a high quality of the predicted suitability map indicates a high validity

of the presence data.

The decades-long coverage of the elicited R. bieti presence data was divided into three shorter historical periods

and the validity of the presence data was evaluated through habitat suitability mapping using presence data in each

period. To solely examine the impact of the presence data on suitability mapping, temporal variabilities in the environ-

mental data layers across the historical periods were controlled for through two means. First, division of the historical

periods (Supporting Information S1) was determined by historical events that induced major environmental change in

the study area, so that in each period the environmental conditions in the study area were relatively stable. Second,

areas where there was no significant environmental change across the historical periods (non-change areas hereafter)

were identified. Non-change areas were areas with neither transition between forest and non-forest nor significant

change in human-posed disturbance across the periods (Supporting Information S2). The identified non-change areas

take up approximately 60% of the entire study area. Habitat suitability was predicted at locations (pixels) in the non-

change areas based on the suitability–environment relationships derived from R. bieti presence data falling in these

areas.

It is assumed in this study that the underlying habitat requirements of R. bieti (i.e., fundamental niche) did not

change significantly over the historical periods. This is a reasonable assumption given that the decades-long period is

very short from an evolutionary perspective. Under this assumption, it is reasonable to expect that the distribution of

R. bieti over the non-change areas did not change much across the historical periods. It follows that the independent

validation data collected in 2008 and 2009 (Section 2.2.2) should also be able to reflect the distribution of the monkeys

in earlier historical periods over the non-change areas. The quality of the suitability map predicted based on the pres-

ence data in each period was thus assessed by comparing the suitability map against the independent validation data

(Section 2.3.3). If the R. bieti presence data elicited from the local residents were of high validity, then the suitability

maps across the historical periods are expected to show a consistent spatial pattern that reflects the distribution of R.

bieti over the non-change areas.

2.3.2 | Habitat suitability mapping

Environmental data

Habitat suitability mapping requires environmental data characterizing the factors impacting habitat use of R. bieti.

These environmental data are needed to derive the suitability–environment relationships from R. bieti presence data

and to predict habitat suitability based on the derived relationships. For R. bieti, the environmental factors impacting its

habitat use include terrain, water source, shelter and food, and human-posed disturbance (Huang, 2009; Long,

Kirkpatrick, Zhong, & Xiao, 1996; Xiao et al., 2003; Zhu et al., 2015).

Accordingly, the following environmental data layers were used for habitat suitability mapping: elevation, slope

gradient, slope aspect, least-cost distance to rivers, least-cost distance to villages or roads, and the shelter and food

factor represented by vegetation type maps. Elevation, slope gradient (%), and slope aspect (discretizing 0–3608 evenly

into eight categories) were derived from a 30 m resolution DEM of the study area (Supporting Information S2.2). Cost

distances were computed based on the DEM and spatial distribution of rivers, roads, and villages. The same set of data

layers related terrain condition, and distance to rivers was used throughout as terrain and rivers were stable across the

historical periods. Distance to villages or roads was computed based on the DEM and villages/roads that were current

to each period. Land-use maps obtained by classifying Landsat images (Supporting Information S2.1) on dates in the

same period were aggregated by applying majority cell statistics to obtain an “average” land use/cover map for that

period. A vegetation type map was extracted from the land use/cover map to represent the shelter and food factor in

each period. All environmental data layers were at 30 m spatial resolution.

Mapping method

The predictive mapping method developed in Zhu et al. (2015) was adopted for mapping R. bieti habitat suitability

using the elicited presence data. This mapping method was adopted here because of its capability to extract
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representative presence locations from the imprecise polygonal sighting data and its flexibility to incorporate observa-

tion effort information to compensate for spatial bias in the presence data. Details of the mapping method are beyond

the scope of this article, and can be found in Zhu et al. (2015), but a brief overview of the mapping method is provided

below.

Wildlife sightings elicited from local residents had only imprecise location information as they were depicted using

sighting polygons (Section 2.2.1). But this does not mean that the wildlife showed up at every location in the polygon

area. It is assumed that the typical environmental condition over the polygon area best approximates the environmen-

tal condition where the wildlife would occur. Under this assumption, the mapping method uses a frequency sampling

strategy to extract representative presence locations from sighting polygons based on the frequency distributions of

environmental data. The frequency sampling strategy includes three operational steps. First, for pixels within each

sighting polygon, the frequency distributions (histograms) with respect to each of the environmental variables (e.g.,

elevation, slope, etc.) were constructed, and the pixels at which the environmental value falls into the modal interval

(the interval of environmental values with the highest frequency) of each frequency distribution were located. Second,

the pixels whose environmental values simultaneously fall into the respective modal intervals were identified as the

representative presence locations of this sighting polygon. Third, representative locations identified in each sighting

polygon were pooled together to form a full set of representative presence locations, which were used in combination

with the environmental data to derive the suitability–environment relationships.

Sightings elicited from the local residents are also likely to be spatially biased. This is because not every location in

the landscape can be equally observed from the routes taken by the local residents, given the irregular and non-

random distribution of their routes and the variability of the terrain conditions. The mapping method computes cumu-

lative visibility based on a DEM and the elicited activity routes as an approximation of observation effort. The mapping

method then compensates for the spatial bias in the presence data through inversely weighting the representative

presence locations by cumulative visibility at that location in deriving suitability–environment relationships from pres-

ence data.

The mapping method derives suitability–environment relationships using probability density functions (PDFs) of R.

bieti presence locations over environmental conditions. The PDF of R. bieti presence over each environmental variable

was estimated using kernel density estimation (Silverman, 1986) based on the environmental data values at the repre-

sentative R. bieti presence locations (extracted from sighting polygons used through the frequency sampling strategy).

Each representative presence location was inversely weighted by the cumulative visibility at that location to compen-

sate for spatial bias when estimating the PDFs. Specifically, the following equation was used to estimate the PDF with

respect to each environmental variable:

f xð Þ5 1
hx

Xn
i51

wiX
wi

K
x2xi
hx

� �" #
(1)

where f(x) is the estimated PDF for environmental variable x, xi is the value of environmental variable x at presence

location i (n presence locations in total), wi is the weight of presence location i and it was used to compensate for the

spatial bias. wi is inversely proportional to the cumulative visibility at location i. K is a kernel function for which the

Gaussian kernel was adopted, and hx is the bandwidth determined using the “rule-of-thumb” algorithm (Silverman,

1986).

Based on the presence PDFs on individual environmental variables, habitat suitability at each location (i.e., pixel)

over the non-change areas was calculated in two steps in a rule-based fashion (Zhu, 2008). First, habitat suitability

with respect to each environmental variable was computed as the normalized density value on the presence PDF curve

corresponding to that variable, given the environmental value at this location, using the following equation:

Sxj 5
f xj
� �

max f xð Þð Þ (2)

where xj refers to the value of environmental variable x at location j, max(f(x)) refers to the maximum value of the PDF,

and Sxj refers to the habitat suitability with respect to environmental variable x at location j. Second, following the
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limiting factor theory in ecology, the overall habitat suitability at this location was computed as the minimum value

among the suitabilities to all environmental variables using the following equation:

Sj5min S1j ; S
2
j ; . . . ; S

m
j

� �
(3)

where m refers to the number of environmental variables.

As this study analyzes the same types of data from the same study area, the parameter setting suggestions of Zhu

et al. (2015) were followed to set parameters for the mapping method (e.g., distance threshold used for computing

cumulative visibility, number of representative presence locations selected in each sighting polygon, bandwidth deter-

mination in kernel density estimation, etc.).

2.3.3 | Evaluation and assessment

As discussed in Section 2.3.1, if the R. bieti presence data elicited from local residents were of high validity, then

the predicted suitability maps in the three periods are expected to show a consistent spatial pattern (consistency)

that reflects the distribution of R. bieti over the non-change areas (accuracy). Spearman’s rank correlation coeffi-

cient q between pixel-wise suitability values on two maps was computed as a quantitative indicator of the consis-

tency between suitability maps. A positive q indicates that the spatial patterns on two suitability maps are

consistent.

The accuracy of each suitability map was evaluated through associating the field-tracked R. bieti presence loca-

tions with the suitability map by calculating the Boyce index (Boyce, Vernier, Nielsen, & Schmiegelow, 2002). Habitat

suitability values on the map were divided into 10 bins using an “equal area” approach: suitability bins were determined

in such a way that pixels falling into the 10 suitability bins were of an approximately equal total area (Boyce et al.,

2002). The Boyce index is Spearman’s rank correlation between the area-adjusted frequency of observed R. bieti pres-

ence locations within individual bins and the bin rank. Area-adjusted frequencies are the frequency of observed R. bieti

presence locations within a bin divided by the area of that range of suitability values available across the study area. A

suitability map that agrees with the distribution reflected in the validation data should have a positive Boyce index

close to 1.0, as more observed presence locations (area-adjusted) would continually be falling within higher suitability

bins (Boyce et al., 2002). The field-tracked R. bieti presence data that fell within the non-change areas were used to

compute the Boyce index for suitability maps in all three historical periods.

3 | RESULTS

Habitat suitability maps predicted over the non-change areas using citizen data falling in the non-change areas in each

historical period are shown in Figure 5. The three suitability maps show a consistent pattern of spatial variation of R.

bieti habitat suitability: areas located within mid- to high elevation range and on the northeast hillslopes were predicted

to be of relatively high suitability; areas over ridges, valleys, and southwest hillslopes were predicted to be of low suit-

ability. Spearman’s rank correlation coefficient q between any two of the three suitability maps was above 0.60 (0.62–

0.66), which confirms that the suitability maps predicted in all three periods show a consistent spatial pattern. This in

turn suggests that the elicited R. bieti presence data indeed captures a consistent spatial pattern of R. bieti habitat suit-

ability across the three periods.

The accuracy of the three suitability maps was evaluated by calculating the Boyce index using the field-

tracked R. bieti presence locations. The Boyce index of suitability maps predicted in the three periods was 0.89,

0.93, and 0.86, respectively. This indicates that the predicted suitability maps are highly consistent with the field-

tracked R. bieti presence locations that reflect the distribution of the monkeys over the mapped areas. This dem-

onstrates that the R. bieti presence data elicited from local residents has validity to reveal the R. bieti distribution

in historical periods.
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4 | DISCUSSION

4.1 | Validity of historical citizen data

Citizens possess abundant knowledge of geographic phenomena accumulated throughout their living history in local

areas (Goodchild, 2007). As already shown in other studies, citizen data are valid to reveal geographic phenomena in

recent periods and can be very useful in various applications (Anad�on et al., 2009, 2010; Ma et al., 2014; Zhu et al.,

2015). This study presents an evaluation of the validity of citizen data to reveal geographic phenomena in historical

periods. As the R. bieti habitat suitability mapping case study reported in this study has shown, citizen data are also

valid to reveal historical geographic phenomena that occurred decades ago.

Citizen data are not expected to be as accurate and comprehensive as data collected through rigorous protocols.

For example, detailed animal behavior data can be recorded by specialized biologists in field tracking. Sightings elicited

from local residents often cannot provide such specifics. But even citizen data at this level of detail could be of great

use for conservation practices (Anad�on et al., 2009, 2010; Ma et al., 2014). Moreover, citizen data could potentially

cover large areas over long periods, while rigorous protocols (e.g., biological survey, tracking) are only practicable in

geographic areas and within very short time frames.

One should be fully aware of the limitations of citizen data and the necessary analytical treatments for these limi-

tations when analyzing citizen data. For example, citizen data on wildlife sightings elicited from the local residents have

only imprecise location information and biased spatial coverage. Therefore, appropriate analytical procedures need to

be applied to increase the location precision and to minimize the effects of spatial bias when using citizen data in appli-

cations (e.g., Zhu et al., 2015).

4.2 | R. bieti habitat change across historical periods

The evaluation conducted in this study has shown that the elicited R. bieti presence data were valid to reveal the R.

bieti distribution in historical periods over the non-change areas. Built upon this observation, the presence data were

used to derive the relationships between R. bieti habitat suitability (i.e., realized niche) and environmental conditions

(Figure 6) and to map R. bieti habitat suitability over the entire study area in each period (Figure 7). The R. bieti habitat

change across the historical periods was examined.

FIGURE 5 Habitat suitability maps predicted over the non-change areas using R. bieti presence data in each period
falling in the non-change areas (based on 892, 666, and 1,000 representative R. bieti presence locations for the three
periods, respectively)
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The spatial distribution pattern of high-suitability patches was generally consistent across the three periods. High-

suitability patches were found in forests (Figure 6d) within the mid- to high elevation range (Figure 6a) on the north-

east hillslopes (Figure 6c). Overall, high-suitability patches were reduced in the 1987–2005 period compared with the

1973–1981 period. For example, there was an area (outlined on Figure 7b) in the 1987–2005 period that has much

lower suitability values compared with the previous period. This was mainly due to the establishment of new village

settlements and roads, which induced significant human disturbance in this area in the 1987–2005 period (Figure 3).

But there was a tendency for high-suitability patches to recover in the 2006–2010 period. The outlined area recovered

to relatively high suitability in the 2006–2010 period, as the monkeys became more tolerant of proximity to villages

and roads (Figure 6f).

The recovering trend found in the 2006–2010 period was confirmed by examining the relationships between R.

bieti habitat suitability and individual environmental variables (Figure 6). In the 2006–2010 period, the evaluations of

FIGURE 7 Habitat suitability maps predicted for the entire study area using R. bieti presence data in each period (based
on 966, 696, and 1,061 representative R. bieti presence locations for the three periods, respectively)

FIGURE 6 Suitability–environment relationships derived from R. bieti presence data in each period. Aspect group 1: 0–
458 (starting fromNorth), 2: 45–908, 3: 90–1358, 4: 135–1808, 5: 180–2258, 6: 225–2708, 7: 270–3158, 8: 315–3608.
Vegetation type 1: Evergreen Coniferous, 2: Pasture, 3: Yunnan Pine, 4: Farmland, 5: Deciduous Broadleaf
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high suitability shifted back to higher ranges that were comparable with (and even higher than) those in the

1973–1981 period (Figure 6a). The distance ranges (distance to rivers, distance to village or road) of high suitability

shifted back to similar ranges in the 1973–1981 period (Figures 6e and f). These might be indicators that conservation

practices initiated by the protected area were effective at restoring R. bieti habitat in the study area.

4.3 | Considerations on citizen data elicitation

Several factors should be taken into consideration when eliciting citizen data using the 3D geovisualization interview

approach. 3dMapper demands high-resolution DEM and satellite imagery to help georeference citizen data as accu-

rately as possible. High-resolution DEM and satellite imagery are now increasingly available in digital format for most

parts of the world (Ma et al., 2014; Toutin, 2004; van Zyl, 2001). For areas where such data are not readily available,

additional efforts on data preparation are needed. In this study, a high-resolution DEM for the Mt. Lasha study area

was created based on contours digitized from hardcopy topographic maps and high-resolution satellite imagery was

obtained from Google Earth.

Compared with 2D topographic maps or aerial photos, 3dMapper can better aid the interviewees to recall and

locate wildlife sightings. Given a 2D representation, relief interpretation skills are needed to construct the 3D topogra-

phy of the landscape based on which orientation and localization can be achieved. However, the local residents often

lack such skills, as they do not have much training in map reading. 3D geovisualization facilitates relief interpretation

by offering a more realistic and intuitive representation of the terrain (Carbonell Carrera & Bermejo Asensio, 2017) and

improves the efficiency of visual search and navigation performance (Liao, Dong, Peng, & Liu 2016).

3dMapper also has some limitations, as learned from our field experience. First, it takes time for the interviewees

to become familiar with 3dMapper. It took 20–30 min to train most interviewees (�65%) before they could orientate

and accurately locate places using 3dMapper. Second, some interviewees (�35%), such as the elders, had difficulties

using 3dMapper due to vision or map-reading problems. In such cases, the field assistant had to locate R. bieti sightings

and activity routes in 3dMapper based on the place names and micro-terrain feature descriptions provided by the

interviewee. This extra step may introduce uncertainty, depending on the accuracy of communication. Finally, walking

around the area with the interviewees might be a better way of eliciting memories than conducting sit-down inter-

views using 3dMapper. We did not adopt this option due to the following considerations. The local residents are

already very familiar with the terrain of the area as a result of their frequent field activities. Moreover, walking around

the area with the interviewees would be logistically challenging and much more time-consuming.

The validity of the elicited citizen data depends on the availability and trustworthiness of the informants. Local res-

idents whose livelihoods are closely related to ecosystem services are ideal informants for eliciting citizen data in their

respective areas. Some local residents might be reluctant to share their knowledge, due to reasons such as conflict of

economic interests. In such cases sociological tools, such as semi-direct or in-depth interviews, can be used to partially

overcome this issue (Anad�on et al., 2009).

The validity of the elicited citizen data also depends on the characteristics of the target geographic phenomenon

under observation. For instance, local residents can often only observe diurnally active wildlife. The target wildlife

should be easily recognizable to reduce misidentification, as local residents often have little training on species identifi-

cation (Anad�on et al., 2009). In this study, R. bieti is an unmistakable species with a strong historic dimension in local

communities (Long et al., 1994). Only information on R. bieti presence was obtained. If more involved information (e.g.,

abundance) is to be obtained from citizen data, then additional measures are needed to ensure reliability of the elicited

data and to reduce uncertainty of the inferences drawn from the data (Anad�on et al., 2009, 2010).

Efforts need to be made in the elicitation process to reduce the temporal imprecision of citizen data. It could be

challenging for interviewees to recall the exact timing of geographic phenomena observed decades ago. In this study,

the year of R. bieti sightings recalled by the interviewees was cross-checked and refined with reference to the timing

of major events (e.g., national policy implementation, marriage, child born, etc.) and the month to seasonal activity pat-

terns in the area (e.g., farming). Temporal information on elicited sightings should be accurate enough to support the

coarse-gain analyses performed across historical periods.
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The elicitation of historical citizen data relies heavily on the memories of the interviewees, because they kept no

records at the time of observation. In this regard, historical citizen data differs greatly from VGI generated using the

enabling technologies of recent periods. For example, while geotagged tweets and photos can be archived and their

quality does not decay even after many years, local residents may easily forget about their encounters with commonly

seen wildlife in the field as time elapses. As a result, historical citizen data might only be useful to reveal geographic

phenomena that are significant enough to “impress” people and maintain long-lasting memories. Thus, before historical

citizen data elicitation, one should first assess the “significance” of the geographic phenomenon of interest. In this

study, while other common species may not be as memorable to the local residents, sightings of R. bieti certainly would

put a dent in their memories because of the strong historic dimension of the monkeys in local communities (Long

et al., 1994).

5 | CONCLUSIONS

This article presents an evaluation of the validity of citizen data to reveal geographic phenomena in historical periods.

The evaluation was demonstrated through a case study of citizen data-based habitat suitability mapping in historical

periods. R. bieti sightings (i.e., citizen data) were elicited from the local residents through 3D geovisualization interviews

in the Mt. Lasha study area in Yunnan, China. The validity of the citizen data to reveal the historical R. bieti distribution

was evaluated through habitat suitability mapping using citizen data in historical periods. The results of controlled

experiments showed that suitability maps predicted using citizen data had a consistent spatial pattern that reflects the

distribution of R. bieti across historical periods. This in turn suggests that citizen data have validity for mapping histori-

cal geographic phenomena.

The evaluation provides supporting empirical evidence for broadening the temporal scope of VGI applications.

With the validity of historical VGI evaluated, VGI can be used to support a wider range of applications requiring

insights on geographic phenomena in historical periods (e.g., examining historical wildlife distributions).
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